Table 3 Initial, perturbed, and corrected parameter values

S1. No.	Details	True value	Perturbed value	Difference,	Uncertainty,	Corrected value	Corrected value ^a
1. 2. 3.	ϵ_1^b ϵ_3 ϵ_{12}	0.8 0.819 0.7	0.75 0.85 0.67	-6.25 3.79 -4.29	±10.0	0.818 0.803 0.698	0.793 0.803 0.705
4. 5. 6.	A_4 A_5 A_6	2733 570 132	2800 555 130	2.45 -2.63 -1.52	±5.0	2818.0 557.8 130.8	2722.4 580.3 133.5
7. 8. 9. 10.	$P_{10} \\ P_{11} \\ \alpha_2 \\ \alpha_3$	0.7 1.0 0.666 0.881	0.65 0.93 0.7 0.8	-7.14 -7.00 5.11 -9.19	±10.0	0.658 0.943 0.672 0.873	0.700 0.982 0.673 0.854
11. 12. 13.	$C_{4,7} \\ C_{4,8} \\ C_{9,11}$	0.027 0.408 0.068	0.024 0.450 0.060	- 11.11 10.29 - 11.76	± 50.0	0.026 0.477 0.062	0.026 0.430 0.073
14. 15. 16.	$R_{2,8} \\ R_{2,9} \\ R_{7,9}$	364.1 1221.2 194.4	400 1000 150	9.86 - 18.11 - 22.84	±25.0	496.5 1241.2 184.1	441.5 1103.7 165.5

 $^{^{\}rm a}$ Corresponds to rounded-off temperature values to nearest 0.5 $^{\rm e}$ C. $^{\rm b}$ Subscripts correspond to node numbers.

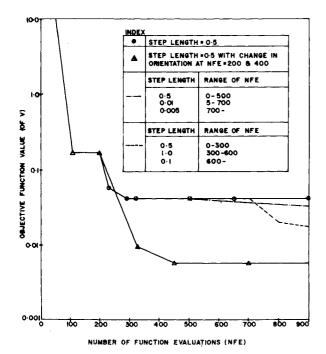


Fig. 2 Objective function value vs number of function evaluations.

values.¹³ In such cases, to provide equal weighting to all the parameters, normalized OFV is used and is defined as

$$F = \sum_{j=1}^{K} \sum_{i=1}^{N} \left[(T_{\text{cal}} - T_{\text{obs}}) / T_{\text{obs}} \right]^{2}$$
 (5)

The χ^2 value for the fit between observed and measured states for dimensional and normalized OFV cases is shown in Table 2. It is preferable to use as many load conditions data (temperature measurements) as possible in a single calculation to obtain corrected parameter values.

There is no method available to choose an initial orientation or step length for the simplex to give the best extremum value of the function. However, after a few trials, one can locate the stage where the simplex is to be reoriented or new set of vertices considered. Figure 2 shows the rate of improvement in optimization due to change in orientation or step length.

The optimization method considered here for conduction and radiation exchange factors can be used for correcting the other thermal parameters, namely, radiation properties, power dissipation, etc. Table 3 shows the result for such parameters.

Both external and internal node parameters are corrected to a large extent. Large deviations in some parameters are due to the insensitivity of the parameter to temperature. Further improvement in parameter values is found to take more computational time. Correction results for observed temperature values rounded off to the nearest 0.5°C are also indicated. It is always possible to correct only those large parameters, keeping the other corrected parameter values constant.

References

¹Ishimoto, T. and Pan, H.M., "Thermal Network Correction Techniques," *Progress in Astronautics and Aeronautics*, Vol. 24: *Heat Transfer and Spacecraft Thermal Control*, edited by J.W. Lucas, AIAA, 1970, pp. 383-409.

Lucas, AIAA, 1970, pp. 383-409.

²Browne Jr., B.H., "Statistical Estimation and Elimination of Thermal Network Model Errors," *Transactions of the ASME*, Ser. C, Vol. 91, 1969, pp. 554-560.

³Ishimoto, T. et al., "Development of Digital Computer Program for Thermal Network Correction," Final Report, Phase I—Investigation/Feasibility Study, TRW Systems, Redondo Beach, CA, Rep-11027-6001-RP-00, 1969.

⁴Shimoji, S. and Oshima, K., "A New Thermal Network Correction Method by the Statistical Regression Analysis," *Progress in Astronautics and Aeronautics*, Vol. 65: *Thermophysics and Thermal Control*, edited by R. Viskanta, AIAA, 1979, pp. 344-365.

Control, edited by R. Viskanta, AIAA, 1979, pp. 344-365.

Shoda, K. and Yoneda, K., "Statistical Identification of Satellites Heat Transfer Characteristics," AIAA Paper 79-1104, June 1979.

⁶Shimoji, S., "A Comparison of Thermal Network Correction Methods," AIAA Paper 81-1139, June 1981.

⁷Doenecke, J., "Adjustment of a Thermal Mathematical Model to Test Data," *Journal of Spacecraft and Rockets*, Vol. 7, June 1970, pp. 720-726.

pp. 720-726.

⁸Costello, F.A. et al., "Coating Selection Program," NASA CR 1041, 1968.

⁹Himmelblau, D.M., *Applied Nonlinear Programming*, McGraw Hill, New York, 1972.

¹⁰Nelder, J.A. and Mead, R., "A Simplex Method for Function Minimization," *Computer Journal*, Vol. 7, 1964, pp. 308-313.

¹¹Badari Narayana, K., "Thermal Network Correction by Optimization Method," Mechanical Systems Division, ISRO Satellite Centre, Bangalore, India, Doc. ISAC-22-83-07-05-10, July 1983.

¹²Badari Narayana, K., "Uncertainty and Sensitivity Analysis in Satellite Thermal Design," Mechanical Systems Division, ISRO Satellite Centre, Bangalore, India, Doc. ISAC-22-83-08-05-05, Aug. 1983

¹³Badari Narayana, K., "Studies on Thermal Network Correction," Mechanical Systems Division, ISRO Satellite Centre, Bangalore, India, Doc. ISAC-22-83-12-05-010, Dec. 1983.

Errata

Prediction of Burning Rates in Nozzleless Rocket Motors

Merrill K. King

Atlantic Research Corporation

Alexandria, Virginia

[J. Spacecraft, 22, 394-395 (1985)]

THE equations for A_1 and A_2 [Eqs. (7) and (8)] are reversed, and the bracketed term following P in Eq. (8) should have been superscripted. The corrected equations should read as follows:

$$A_1 = k_3 V^{k_4} P^{\{k_5 + k_6 \ell_n(V)\}}$$
 (7)

$$A_2 = 1 - k_1 V^{-k_2} (8)$$

This equation reversal also occurs in AIAA Paper 82-1200, on which this Synoptic is based.